verse dimension of mean eddy at wall, m; y*= y/lx, dimensionless coordinate; u™=u/ux, dimensionless veloc-
ity; v, injection velocity, m/sec; v*'=v/ux, dimensionless injection parameter; k, roughness height, m. Sub-
scripts: *, flow parameters for y+=1; &, flow parameters for y=35; W, wall parameter; s, flow parameter
at rough surface with ¥ = 1; 0, initial flow conditions; v, flow conditions corresponding to injection velocity v.
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HYDRODYNAMIC REACTION TO ACCELERATED ONE-
DIMENSIONAL MOTION OF GAS BUBBLES OF
VARIABLE VOLUME IN AN UNBOUNDED LIQUID

S. K. Dymenko and V. N. Kuchkin UDC 541.24:532.5

A solution is given for the problem of the hydrodynamic reaction of an ellipsoidal gas bubble
of variable volume to accelerated motion and the relation between the value of the apparent
mass and the eccentricity of the bubble.

In [1] the problem of the motion of gas bubbles with constant velocity in an unbounded volume of liguid
was solved, and a relation was established between the constant velocity at which the bubble rises to the sur-
face, the form of the bubble, and the forces of viscous friction. In a number of technical devices, motion with
variable velocity and variable bubble volume is realized. The variability of the velocity leads to additional re-
sisting forces [2]; according to the available literature, the magnitude of these forces as applied to the vari-
able volume acting on a gas bubble in the form of an oblate ellipsoid of revolution has not been determined.

In an ellipsoidal coordinate system placed with center of mass of the bubble floating with velocity U,
x = cchEcosncosy; y=cchEcos nsiny; z = cshEsiny (L)

for nonsymmetric potential motion the general solution for the velocity potential has the form [1]

@ (&, M) = [AishE — B(shfarctgsh& 4+ I)]sinn. (2)
Here i =v—1, and the unknown coefficients A and B are determined from the boundary conditions
. 1 dp (&, 1) . (3)
Wm - o — coon or — Usinm,
9¢ (& m) ok
e = TE 4
5 . ot 1 ch2g, — cos?. (4)

In Eq. (4) and below, the index 0 denotes points that belong to the surface of the bubble.
If we take into account (3) and (4), the expression for the velocity potential acquires the form

a . , & 0§ chPfy—cos?y [ & _ e
HLA?)shg-{—shgarctgshz—{-l}smn—?-—L— o g, —é—shg—shaarci.gshg 1}.

Uce

9E ) =

Translated from Inzhenerno- Fizicheskii Zhurnal, Vol. 39, No. 1, pp. 47-50, July, 1980. Original article
submitted June 26, 1979,
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For brevity in writing, in (5) we introduce the notation

thg
L=2 —arctgshe,— 250 6
2 gshg, ohE, (6)

The first term in (5) coincides with the expression for the velocity potential of a gas bubble of constant volume
[1], and the second describes effects that arise with change in the volume.

If the velocity varies in time, then on the bubble there will act forces of inertia due to the variation of the
near field of flow of the liquid. The near-field potential is given by the equation

%l = 9@ )= lmeE, 1) =O\(E 1)+ D, 1) @
where
O 1) =— Ue (%sh’g‘——sh&arctgsh’g‘——l)sin'q, (8)
08 ¢ ch®,—cos? [ = (9)
@, (E, 1) = < T ohE_ 1),
> (B, m) o I chE, (2 sh& —shEarctgshi 1)

Equation (8) describes the near field of the velocities for accelerated motion of the center of mass of the bubble
and completely agrees with that obtained earlier in [1], and &,(£, 1) is the velocity field of the liquid that arises
for motion of the bubble boundary normal to the surface.

It is obvious that the distribution of the potential &,(¢, 1), which is symmetric with respect to the z and
r="Vx2+y? axes, leads to forces acting on an element of the bubble surface that are also symmetric with respect
to the coordinate axes. Therefore, the resultant of these forces applied to the center of mass of the bubble will
equal zero. Nevertheless the change in potential ®(¢, 1) in time change a change in the free energy of the lig=-
uid by an amount [2]

o= ({0 n Rle a0
2 : on

Here 8®,(¢,, n)/5ﬁ is the normal component of the velocity of the surface;

6(1)2(%,: W o, 9%, V I, —coP (11)
on ot

- 12)

ds = 2quc2 ch & cos n }/ ch®E, — cos? ). (

With account of (11) and (12), Eq. (10) takes the form
' 98, \? | ) 2 1 ) (13)
Ty = —2apc® | —2— ) sh3g (1 — —— 1 — .
: e ( ot ) s ( Lt EshE, ( ssteE, T T hamE,

Thus, the quantity (13) must be calculated in problems connected with the equation of energy balance.

The asymmetry with respect to the r =cchi{cosn axis of the velocity potential & (£, 7)) leads to the appear-
ance of nonzero resultant forces of reaction Fp of the liquid to the accelerated motion of the bubble. In accor-
dance with [2], F,. is determined as the derivative with respect to time of the momentum of the liquid B, sur-
rounding the bubble:

Bi=—p |{0,& mnd, (14)
where &, (£, 1) is the magnitude of the potential ®,(£, 1) on the boundary of the bubble with the liquid; n’ is the
vector of the normal to the bubble surface; .

7= ,_ ch go Sinn . (15)
V ch?Ey — cos? 1

As a result of substitution of (12) and (15) into (14) and subsequent integration, the magnitude of the momentum
is determined from the expression )
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e /A {
12— .
: Fig. 1. Dependence of the apparent mass
of anellipsoidal bubble of constant volume
s on the ratiooftheaxes ofthe ellipse. The
quantity Ae/Ag isthe ratio of the apparent
masses ofanellipsoid of revolution and of
a sphere; sh{,/chf, is the ratio of the
4 "N minor and major semiaxes of the ellipse.
\F—

0 o 3 Shi, e,

1 (16)

. ..__1 \
By = nocU | shg, ch?g, s
i 3 b ( Eo e / )
where the quantity

\

Ry = — % npc? (sh §ch2g, — ) a7

g -

determines the apparent mass of the liquid for motion ofan oblate ellipsoid of revolution.

For ¢—0, £{3—=, and the condition cchf; =R, the ellipsoid of revolution is transformed into a sphere of
radius R, and (17) is transformed into

. 2 (18)
fimde= 5 0R= b
o
Thus, in the limit, Eq. (17) also describes the apparent mass of a sphere.
The reaction force of the liguid F,. to the accelerating bubble is determined by the equation
d
Fp =— (1) 19
r o (A d)) (19

From (19) it follows that the reaction force of the liquid to its own action tends to retard the change in velocity
and bubble volume. The magnitude of the force depends considerably on the form of the gas bubble and the rate
of change of volume., As is shown by an analysis of Eq. (19}, for fixed bubble volume, owing to only a change in
the apparent mass, the reaction force is changed from a value equal to the reaction force of the liquid ona
spherical bubble to an infinitely large value. The latter corresponds to the transformation of the bubble into a
plane of infinite extent. The dependence of the apparent mass of the bubble on its formis illustrated in Tig. 1.
The ratio of the minor axis of the ellipse to the major axis is plotted along the abscissa, and along the ordinate
we plot the ratio of the apparant mass of the ellipsoid of revolution to the apparent mass of the sphere of the
same volume, i.e., we have a graph of the function

he :2(1_ ! ) (20)
hs Lch2E, shE,

obtained by division of Egs. (17) and (18) for the condition Ve = Vg = const. Figure 1 shows that the generally
assumed idealization of gas bubbles as spheres can cause sizable errors in a quantitative analysis of the motion
of gas— liquid mixtures.

NOTATION

@&, m), velocity potential; V, velocity of motion of the bubble with respect to the liquid; ®(£, 7), velocity
potential of the near field; T,, kinetic energy of the liquid due to the variation in bubble volume; ¥,, reaction
force of the liquid; B,, momentum of the liquid; Ae, apparent mass of the ellipsoid; p, density of the liguid;
Vg, volume of the ellipsoidal bubble.
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BREAKUP OF AN ANOMOLOUSLY VISCOUS LIQUID
FILM IN A CENTRIFUGAL FORCE FIELD

I.M. Nafikov and N. Kh. Zinnatullin UDC 532.135

An equation is obtained for the breakup radius with consideration of tipping moments and Lapla-
cian pressure forces acting on the liquid ridge at the critical point.

As is well known, in centrifugal atomizers breakup of the liquid film and droplet formation may occur be-
yond the edges of the cup, at its boundary, or on its surface. Experiments have shown that in the last case the
droplet dispersion becomes more homogeneous. Study of liquid film breakup is also necessary to determine
the minimum liquid flow density in film-type centrifugal devices [1].

The goal of the present study is to determine the critical breakup parameters (liquid film radius of
depth) as functions of the technological parameters.

We will consider the breakup of a laminar isothermal film of an anomolously viscous liquid which obeys
a power-type law on the surface of a curvilinear cup. Experiments have shown that a liquid ridge is formed at
the boundary between the dry and wetted surface areas. We will describe the forces acting on the liquid ridge
at the critical point G using the notation of [2] (Fig. 1). We assume that the ridge has a cylindrical surface with
constant radius of curvature Ry.

Considering the phenomenon of wetting angle hysteresis (i.e., the possibility of short-term rotation ofthe
liquid film surface about the critical point G), we write the equation for the equilibrium state of the ridge

M;+M,+ M, =0, (1)
where
A’IU = USC; (2)
e,
— (] .
M, = — S‘ — 8ds; (3)
o
hy
M, =— 5' paw?r sin o hdh. (4)
0

Assuming that the velocity profile is defined [3, 4] as

we integrate Eq. (3), obtaining

where

S. M. Kirov Kazan' Chemicotechnological Institute. Translated from Inzhenerno- Fizicheskii Zhurnal,
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